Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses.

نویسندگان

  • Thomas J Gross
  • Karol Kremens
  • Linda S Powers
  • Brandi Brink
  • Tina Knutson
  • Frederick E Domann
  • Robert A Philibert
  • Mohammed M Milhem
  • Martha M Monick
چکیده

Macrophages, including alveolar macrophages, are primary phagocytic cells of the innate immune system. Many studies of macrophages and inflammation have been done in mouse models, in which inducible NO synthase (NOS2) and NO are important components of the inflammatory response. Human macrophages, in contrast to mouse macrophages, express little detectable NOS2 and generate little NO in response to potent inflammatory stimuli. The human NOS2 gene is highly methylated around the NOS2 transcription start site. In contrast, mouse macrophages contain unmethylated cytosine-phosphate-guanine (CpG) dinucleotides proximal to the NOS2 transcription start site. Further analysis of chromatin accessibility and histone modifications demonstrated a closed conformation at the human NOS2 locus and an open conformation at the murine NOS2 locus. In examining the potential for CpG demethylation at the NOS2 locus, we found that the human NOS2 gene was resistant to the effects of demethylation agents both in vitro and in vivo. Our data demonstrate that epigenetic modifications in human macrophages are associated with CpG methylation, chromatin compaction, and histone modifications that effectively silence the NOS2 gene. Taken together, our findings suggest there are significant and underappreciated differences in how murine and human macrophages respond to inflammatory stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage

Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin ...

متن کامل

Epigenetic Modulation of Microglial Inflammatory Gene Loci in Helminth-Induced Immune Suppression

In neurocysticercosis, parasite-induced immune suppressive effects are thought to play an important role in enabling site-specific inhibition of inflammatory responses to infections. It is axiomatic that microglia-mediated (M1 proinflammatory) response causes central nervous system inflammation; however, the mechanisms by which helminth parasites modulate microglia activation remain poorly unde...

متن کامل

Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice.

Acute lung inflammation and injury were induced by intranasal instillation of lipopolysaccharide (LPS) in normal and type 2 nitric oxide synthase (NOS2)-deficient (NOS2-/-) C57BL/6 mice. LPS-induced increases in extravasated airway neutrophils and in lung lavage fluid of TNF-alpha and macrophage inflammatory protein-2 were markedly lower in NOS2-/- than in wild-type mice, indicating that NOS2-d...

متن کامل

Anti-Inflammatory Cytokine Interleukin-4 Inhibits Inducible Nitric Oxide Synthase Gene Expression in the Mouse Macrophage Cell Line RAW264.7 through the Repression of Octamer-Dependent Transcription

Inducible nitric oxide synthase (iNOS) is a signature molecule involved in the classical activation of M1 macrophages and is induced by the Nos2 gene upon stimulation with Th1-cell derived interferon-gamma (IFNγ) and bacterial lipopolysaccharide (LPS). Although the anti-inflammatory cytokine IL-4 is known to inhibit Nos2 gene expression, the molecular mechanism involved in the negative regulati...

متن کامل

Comparision of the effects of Leishmania Soluble Antigen (LSA) and Lipopolysaccharide (LPS) on C57BL/6 Mice Macrophage Function

Background: Macrophages activation is the important anti-leishmania immune response. Different signals could affect macrophages development and functional activation. Objectives: In the present study, we compared the effect of Leishmania Soluble Antigen (LSA)and Lipopolysaccharide (LPS) on peritoneal macrophage responses. Appropriate activation of macrophages depends on thesignals they receive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 192 5  شماره 

صفحات  -

تاریخ انتشار 2014